Whole blood
Clinical data | |
---|---|
Routes of administration | IV |
ATC code | |
Identifiers | |
ChemSpider |
|
Whole blood (WB) is human blood from a standard blood donation.[1] It is used in the treatment of massive bleeding, in exchange transfusion, and when people donate blood to themselves (autologous transfusion).[1][2] One unit of whole blood (approximately 450 mL) increases hemoglobin levels by about 10 g/L.[3][4] Cross matching is typically done before the blood is given.[2][5] It is given by injection into a vein.[6]
Side effects include red blood cell breakdown, high blood potassium, infection, volume overload, lung injury, and allergic reactions such as anaphylaxis.[2][3] Whole blood is made up of red blood cells, white blood cells, platelets, and blood plasma.[3] It is best within a day of collection; however, it can be stored for up to three weeks if refrigerated (1-6 °C).[3][5][7] The blood is typically combined with an anticoagulant and preservative during the collection process.[8]
The first transfusion of whole blood was in 1818; however, common use did not begin until the First and Second World Wars.[5][9] It is on the World Health Organization's List of Essential Medicines.[10][11] Whole blood is also used to make a number of blood products including red cell concentrates, platelet concentrates, cryoprecipitate, and fresh frozen plasma.[1]
Medical use
[edit]Whole blood has similar risks to a transfusion of red blood cells and is typically cross-matched to avoid hemolytic transfusion reactions. The use of whole blood is common in low- and middle-income countries. Over 40% of blood collected in low-income countries is administered as whole blood, and approximately a third of all blood collected in middle-income countries is administered as whole blood.[12]
Whole blood is sometimes "recreated" from stored red blood cells and fresh frozen plasma (FFP) for neonatal transfusions. This is done to provide a final product with a very specific hematocrit (percentage of red cells) with type O red cells and type AB plasma to minimize the chance of complications.[13]
Transfusion of whole blood is being used in the military setting and in the civilian setting, where it is being used in pre-hospital trauma care and in the setting of massive transfusion in the civilian setting.[14][15][16][17] Whole blood can be ABO-type specific when the recipient blood type is known. When the recipient’s blood group is not known, particularly in pre-hospital transfusion, low-titer O universal donor whole blood (LTOWB) can be used; this requires that the donor plasma contains only low titers of anti-A and anti-B.[18]
Processing
[edit]Historically, blood was transfused as whole blood without further processing. Most blood banks now split the whole blood into two or more components,[18] typically red blood cells and a plasma component such as fresh frozen plasma. Platelets for transfusion can also be prepared from a unit of whole blood, whereby 4 or 5 buffy coats are pooled to produce a platelet component. Some blood banks have replaced this with platelets collected by plateletpheresis because whole blood platelets, sometimes called "random donor" platelets, must be pooled from multiple donors to get enough for an adult therapeutic dose.[19]
The collected blood is generally separated into components by one of three methods. A centrifuge can be used in a "hard spin" which separates whole blood into plasma and red cells or a "soft spin" which separates it into plasma, buffy coat (used to make platelets), and red blood cells. The third method is sedimentation: the blood simply sits overnight, and the red cells and plasma are separated by gravitational interactions, which is used predominantly in low-income countries.
Storage
[edit]Whole blood is typically stored under the same conditions as red blood cells and can be kept up to 35 days if collected with citrate-phosphate-dextrose-adenine-1 (CPDA-1) anticoagulant solution, or 21 days with other common anticoagulants such as citrate-phosphate-dextrose (CPD).[20]
If the whole blood is used to make platelets, it is kept at room temperature until the process is complete. Whole blood processing must be completed within 24 hours to minimize the warm storage of red cells in the unit.
References
[edit]- ^ a b c Hess JR, Beyer GM (2007). "Red Blood Cell Metabolism During Storage: Basic Principles and Practical Aspects". In Hillyer CD (ed.). Blood Banking and Transfusion Medicine: Basic Principles & Practice. Elsevier Health Sciences. p. 190. ISBN 978-0443069819. Archived from the original on 2017-01-12.
- ^ a b c Connell NT (December 2016). "Transfusion Medicine". Primary Care. 43 (4): 651–659. doi:10.1016/j.pop.2016.07.004. PMID 27866583.
- ^ a b c d Plumer AL (2007). "Transfusion Therapy". Plumer's Principles and Practice of Intravenous Therapy. Lippincott Williams & Wilkins. p. 422. ISBN 9780781759441. Archived from the original on 2017-01-12.
- ^ Woodson LC, Sherwood ER, Kinsky MP, Talon M, Martinello C, Woodson SM (2012). "Anesthesia for burned patients". In Herndon DN (ed.). Total Burn Care: Expert Consult - Online and Print. Elsevier Health Sciences. p. 194. ISBN 9781455737970.
- ^ a b c Bahr MP, Yazer MH, Triulzi DJ, Collins RA (December 2016). "Whole blood for the acutely haemorrhaging civilian trauma patient: a novel idea or rediscovery?". Transfusion Medicine. 26 (6): 406–414. doi:10.1111/tme.12329. PMID 27357229. S2CID 24552025.
- ^ Flagg C (2015). "Intravenous Therapy". In Linton AD (ed.). Introduction to Medical-Surgical Nursing. Elsevier Health Sciences. p. 287. ISBN 9781455776412. Archived from the original on 2017-09-14.
- ^ Marini JF, Wheeler AP (2012). "Blood Conservation and Transfusion". Critical Care Medicine: The Essentials (4th ed.). Lippincott Williams & Wilkins. p. 267. ISBN 9781451152845. Archived from the original on 2017-01-11.
- ^ Rudmann SV, ed. (2005). "Donor Screening and Blood Collection". Textbook of Blood Banking and Transfusion Medicine. Elsevier Health Sciences. p. 205. ISBN 072160384X. Archived from the original on 2017-01-12.
- ^ Tanaka K (2012). "Transfusion and Coagulation Therapy". In Hemmings HC, Egan TD (eds.). Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application. Elsevier Health Sciences. p. 628. ISBN 978-1455737932. Archived from the original on 2017-01-11.
- ^ World Health Organization (2023). The selection and use of essential medicines 2023: web annex A: World Health Organization model list of essential medicines: 23rd list (2023). Geneva: World Health Organization. hdl:10665/371090. WHO/MHP/HPS/EML/2023.02.
- ^ "Introduction and Summary". Blood policy & technology. DIANE Publishing. 1985. p. 8. ISBN 9781428923331. Archived from the original on 2017-01-12.
- ^ "Blood safety and availability". www.who.int. Retrieved 2019-06-22.
- ^ Sharma DC, Rai S, Mehra A, Kaur MM, Sao S, Gaur A, et al. (July 2007). "Study of 25 cases of exchange transfusion by reconstituted blood in hemolytic disease of newborn". Asian J Transfus Sci. 1 (2): 56–8. doi:10.4103/0973-6247.33448. PMC 3168121. PMID 21938234.
- ^ Flint AW, McQuilten ZK, Wood EM (April 2018). "Massive transfusions for critical bleeding: is everything old new again?". Transfusion Medicine. 28 (2): 140–149. doi:10.1111/tme.12524. PMID 29607593. S2CID 4561424.
- ^ Morgan KM, Abou Khalil E, Feeney EV, Spinella PC, Lucisano AC, Gaines BA, et al. (July 2024). "The Efficacy of Low-Titer Group O Whole Blood Compared With Component Therapy in Civilian Trauma Patients: A Meta-Analysis". Critical Care Medicine. 52 (7): e390 – e404. doi:10.1097/CCM.0000000000006244. PMID 38483205.
- ^ Abou Khalil E, Morgan KM, Gaines BA, Spinella PC, Leeper CM (January 2024). "Use of whole blood in pediatric trauma: a narrative review". Trauma Surgery & Acute Care Open. 9 (Suppl 1): e001127. doi:10.1136/tsaco-2023-001127. PMC 10773435. PMID 38196932.
- ^ Gammon RR, Meena-Leist C, Al Mozain N, Cruz J, Hartwell E, Lu W, et al. (September 2023). "Whole blood in civilian transfusion practice: A review of the literature". Transfusion. 63 (9): 1758–1766. doi:10.1111/trf.17480. PMID 37465986.
- ^ a b Hillyer CD (2009). Transfusion medicine and hemostasis: clinical and laboratory aspects. Amsterdam Boston: Elsevier. ISBN 978-0-12-374432-6.
- ^ Chu YH, Rose WN, Nawrot W, Raife TJ (May 2021). "Pooled platelet concentrates provide a small benefit over single-donor platelets for patients with platelet refractoriness of any etiology". The Journal of International Medical Research. 49 (5): 3000605211016748. doi:10.1177/03000605211016748. PMC 8142527. PMID 34013757.
- ^ Sivertsen J, Braathen H, Lunde TH, Kristoffersen EK, Hervig T, Strandenes G, et al. (May 2020). "Cold-stored leukoreduced CPDA-1 whole blood: in vitro quality and hemostatic properties". Transfusion. 60 (5): 1042–1049. doi:10.1111/trf.15748. PMID 32187700.
External links
[edit]- Blood & Blood Products from U.S. Food and Drug Administration (FDA)